South African climates; highlights from International Ocean Discovery Program Expedition 361

Author(s): Hemming, Sidney R.; Hall, Ian R.; LeVay, Leah
Author Affiliation(s): Primary:
Columbia University of New York, Palisades, NY, United States
Other:
Cardiff University, United Kingdom
Texas A&M University, United States
Volume Title: AGU 2016 fall meeting
Source: American Geophysical Union Fall Meeting, Vol.2016; American Geophysical Union 2016 fall meeting, San Francisco, CA, Dec. 12-16, 2016. Publisher: American Geophysical Union, Washington, DC, United States
Note: In English
Summary: International Ocean Discovery Program Expedition 361 drilled six sites on the southeast African margin and in the Indian-Atlantic ocean gateway, southwest Indian Ocean, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel, at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and the Cape Basin were targeted to reconstruct the history of the Greater Agulhas Current System over the past ∼5 Ma. The Agulhas Current transports 70 Sv of warm and saline surface waters from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. The main objectives of the expedition were to document the oceanographic properties of the Agulhas Current through tectonic and climatic changes during the Plio-Pleistocene, to determine the dynamics of the Indian-Atlantic gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, to address the influence of the Agulhas Current on African terrestrial climates and potential links to Human evolution. Additionally, the Expedition set out to fulfill the needs of the Ancillary Project Letter, consisting of high-resolution interstitial water samples that will, and to constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. Here we highlight some of the expedition successes and show how it has made major strides toward fulfilling each of these objectives. The recovered sequences allowed complete spliced stratigraphic sections to be generated that span the interval of 0 to between ∼0.2 and 7 Ma. These sediments provide an exceptional opportunity to generate decadal to millennial-scale climatic records that will resolve key paleoceanographic and paleoclimatic questions from a region poorly represented in the database of scientific drill sites.
Year of Publication: 2016
Research Program: IODP2 International Ocean Discovery Program
Key Words: 22 Environmental Geology; Africa; Climate change; Cores; Expedition 361; International Ocean Discovery Program; Marine sediments; Sediments; South Africa; Southern Africa
Coordinates: S412545 S154900 E0414610 E0172400
Record ID: 2017051545
Copyright Information: GeoRef, Copyright 2017 American Geosciences Institute. Reference includes data supplied by, and/or abstract, Copyright, American Geophysical Union, Washington, DC, United States